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Crack growth resistance curve and size effect in 
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A general theory is presented for the fracture of cementitious materials. It is shown that crack 
growth resistance curves can be constructed for cement pastes using fracture data available in 
the literature. The crack growth resistance curves are used to explain the specimen size and 
crack length dependence of fracture toughness in cement pastes. 

1. Int roduct ion 
Although the fundamental concepts of linear elastic 
fracture mechanics (LEFM) have been successfully 
applied to a wide range of engineering materials there 
is considerable disagreement as to whether these frac- 
ture concepts can be used to determine the fracture 
properties of cement paste, mortar  and concrete. The 
main concern is that unless very large specimens are 
employed the fracture toughness (Kc) values obtained 
for these cementitious materials are size-dependent 
and are invalid fracture measurements [1, 2]. Even 
when the fracture process zone is comparatively small 
as in the case of cement paste, the experimental results 
[1, 3-11] are quite often contradictory. While some 
investigators [3-9] have shown that the strength and 
flaw size of cement paste are related by the K~ concept, 
others [1, 10, 11] dissented from this view and showed 
that Kc either increases with size [1, 10] or decreases 
with crack length [11] so that LEFM concepts are 
inapplicable. 

It must, however, be pointed out that even if K~ is 
dependent on specimen size or crack length, this does 
not necessarily mean that LEFM is invalid. In this 
paper, we propose that the crack growth resistance 
(KR) curve concept developed within the framework 
of LEFM may be used to explain the size-dependent 
Kc results of  cement paste. The crack growth resist- 
ance curve concept was first used to explain size effects 
in thin sheet metals under essentially plane stress con- 
ditions. The shear lip formation in metals associated 
with plane stress gives rise to an increase in KR with 
crack growth. KR curves for both mortar  and concrete 
have already been established by Wecharatana and 
Shah [12]. The fact that cement paste has a rising Kr~ 
curve with crack extension (Aa), i.e. stable crack 
growth, before final instability is not new. Such a 
phenomenon has been recorded by several investi- 
gators [6, 13-15]. It may be suggested that the origins 
of stable crack growth are partly due to the pull-out of 
calcium silicate hydrate (CSH) fibrils behind the crack 
tip [1, 16] and partly due to the cement grains or 
unbroken short segments bridging across the crack 
faces [13]. The increased work required to cause 
separation of the CSH fibrils and the bridging seg- 

ments in order to keep the crack tip advancing must 
give rise to the KR-curve effect. Microcracking in the 
wake of the crack tip may also cause toughening as the 
crack extends. The zone over which these toughening 
mechanisms occurred may be conveniently called the 
fracture process zone. 

The "fictitious crack" model of Hillerborg and co- 
workers [17, 18] can be used to analyse the fracture 
size dependence of  cement paste. In this method the 
fracture process zone is replaced by a fictitious crack 
which can still transmit a stress. The transmitted stress 
at any point along the fictitious crack is a function of  
the crack opening at that point which can be obtained 
from stress-displacement measurements made during 
a tensile test. At the tip of the fictitious crack the stress 
is finite and equal to the maximum tensile strength. In 
a stable specimen, such as a displacement-controlled 
double cantilever, the fictitious crack grows under 
increasing load until the stress transmitted at the tip of 
the true crack drops to zero and the crack tip opening 
displacement (CTOD) reaches its maximum value, 
(CTOD)c. During this stage the true crack remains 
stationary. If the load is further increased the true 
crack begins to grow as well as the fictitious crack. The 
main problem with the Hillerborg model is that it 
requires considerable computation time. Hillerborg 
has used the finite element method in his analysis, 
though we have shown that the displacements can be 
found from the standard stress intensity solutions by 
the use of Castigliano's method [19]. 

Jenq and Shah [20] have proposed a simpler two- 
parameter method to account for size dependence in 
cementitious materials. However, we believe that their 
method, though it has been used to achieve remark- 
able agreement with the data obtained by Higgins and 
Bailey [1] for cement paste, is physically unsound. In 
the Jenq and Shah model the fracture process zone is 
replaced by a fictitious crack as in the Hillerborg 
model. They assume that for geometries like the notch 
bend specimen, where for constant load the stress 
intensity factor due to the applied load increases with 
crack length, the maximum load and hence the critical 
Ko are obtained when two material parameters reach 
critical values. These parameters are: (i) the stress 
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intensity factor at the tip of the fictitious crack due to 
the applied loads, and (ii) the CTOD at the tip of the 
true crack due to the applied loads. We shall show that 
the first condition, that unstable crack growth occurs 
at a critical stress intensity factor ~c ,  is a reasonable 
assumption for notch bend specimens. However, the 
actual CTOD at the tip of  the true crack is the sum of 
the CTOD due to the applied loads and that due to the 
stresses transmitted across the fictitious crack. This 
latter component of the CTOD is not insignificant and 

cannot be neglected. Furthermore, we shall show that 
in the notch bend geometry the specimen becomes 
unstable before the fracture process zone is fully 
developed and that the CTOD is less than the critical 
value. 

In this paper we apply our development of crack 
growth resistance curves for fibre-reinforced materials 
[19, 21-24] to the analysis of cement paste. 

2. Fracture theory for cementi t ious 
materials 

We assume that the fracture process zone where the 
material is no longer completely coherent can be 
modelled by Hillerborg's fictitious line crack (Fig. 1). 
Since the stress at the tip of the fracture process zone 
is finite and for practical purposes equal to the maxi- 
mum tensile strength of the material, there can be no 
singularity at the tip of  the fictitious crack. Hence the 
effective stress intensity factor K at the tip of the 
fictitious crack, which is the sum of the stress intensity 
factor K~ due to the applied loads and Kr due to the 
stresses in the fracture process zone, must be zero, i.e. 

K = K a +  gr = 0 (1) 

The crack growth resistance KR is defined as the 
applied stress intensity factor Ka and therefore 

KR -- Kr. (2) 

This expression is positive since the stresses in the 
fracture process zone tend to close the crack and hence 
produce a negative stress intensity factor Kr which 
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can be numerically calculated for a given specimen 
geometry [19]. 

In common with Jenq and Shah [20] we propose 
that the true crack will not propagate until the CTOD 
at its tip reaches a critical value 5°. However, we use 
the total CTOD (5) given by 

5 = 5a "Jr- 5r (3) 

where 5a is the CTOD due to the applied loads and 
5r is the negative CTOD due to the stress transmitted 
across the fictitious crack, which can be calculated 
from Castigliano's method [19]. Like Hillerborg 
and co-workers [17, 18] we assume that the stress- 
displacement relationship for the fracture process 
zone is unique and a material property. So far our 
method is identical to that of Hillerborg but our 
solution is far simpler. 

We have shown [19] that a reasonable approxi- 
mation to K R curves can be obtained for cemen- 
titious materials if it is assumed that the crack faces 
remain straight as they deform. Furthermore we have 
shown that it is not necessary to model the stress- 
displacement curve precisely and that a linear stress- 

displacement relationship can be used [t9]. The same 
approximations are used in this paper. Our equivalent 
linear stress-displacement relationship for a fully 
developed fracture process zone of length ap is given 
by 

O" = O" m 1 - -  ~ c  c = 0" m 1 - -  ( 4 )  

where x is measured as in Fig. 1. To obtain a KR curve 
we first calculate the fully developed fracture process 
zone size ap from the conditions that K = 0 at the 
fictitious crack tip and the CTOD is the critical value 
5c, and noting that the stress in the process zone is 
given by Equation 4. This calculation requires iter- 
ation but converges very rapidly compared to an exact 
solution where the complete shape of  the process zone 
has to be found by iteration [19]. For  loads that do not 
develop the full fracture process zone, we assume that 
Equation 4 still applies. The stresses in the process 
zone are then known and the KR curve can be 
calculated from Equation 2. 

In very large specimens the KR curve reaches a 
plateau value K~ when the fracture process zone is 
fully developed, given by 

K~ = (Eco) 1/2 (5) 

where co is the area under the stress-displacement 
curve for the process zone. However, in smaller speci- 
mens KR will not reach a plateau and it is dependent 
on the specimen size and geometry. This dependence 
is particularly strong for the notch bend geometry 
where in small specimens KR can be considerably 
greater than K~ [24]. 

In most geometries the specimen will become un- 
stable at loads less than those required to develop a 
full fracture process zone. The critical stress intensity 
factor K c at which instability occurs is obtained [23] 
from the conditions 

Figure 1 F r a c t u r e  m o d e l  f o r  c e m e n t i t i o u s  m a t e r i a l s .  K~ = Ka = KR (6) 
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C?Ka ] dKR 
O-a-/K. =K¢ -- da (7) 

where a is the effective crack length referred to the tip 
of the fictitious crack. If  the appropriate KR curve is 
constructed from knowledge of O'rn and &~, the critical 
stress intensity factor can be found by iteration. 

3. Crack growth  resistance curves 
for cement  paste and the size 
dependence of Kc 

The most comprehensive data on the size dependence 
of K~ for cement pastes are those of Higgins and Bailey 
[1] for notch bend specimens. Watson [25] has collected 
many K¢ data, but they cannot be analysed because 
there are different water/cement ratios which affect the 
K~ values [26]. We have used the method outlined in 
the previous section to construct KR curves for the 
specimens of Higgins and Bailey from estimates of 6 m 
and E6o. These KR curves were then used to calculate 
the critical stress intensity factors K~. Although 
Higgins and Bailey used three-point load bend speci- 
mens we have made our calculations assuming pure 
bending because we possessed a previous computer 
program [24] that could be very simply modified to 
solve the present problem. The difference for a given 
bending moment between the stress intensity factor 
for three-point loading and pure bending is slight and 
does not introduce a significant error. The critical 
stress intensity factors Ko are calculated for the initial 
notch length, as were the experimental values obtained 
by Higgins and Bailey. These values are significantly 
less than the values of the critical applied stress inten- 
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Figure 2 The critical stress intensity factor K c as a function of  initial 
notch length for var ious specimen sizes with L = 5d (experimental 
data f rom Higgins and Bailey [I]). d (ram) = ( e )  5, (D) 8, (A) 14, 
(0) 28, (x) 56, ( I )  llO. 
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sity factors at the tip of the fictitious crack obtained 
from Equations 6 and 7. 

By varying (7 m and Ebc we obtained the values of Kc 
that gave the best fit to the results of Higgins and 
Bailey [1] (Fig. 2). The actual values of Kc are not very 
sensitive to am and E&c provided K~ was kept constant 
at about 0.72 MPa m ~/2. This insensitivity to the actual 
relationship used for the stress-displacement curve 
adds weight to our argument that any reasonable 
equivalent curve can be used in place of the actual one. 
Although the theoretical curves do not give as close a 
fit to the mean value of K~ for the crack size of Higgins 
and Bailey's results [1] as those of Jenq and Shah [20], 
they do demonstrate that the size effect on Kc is due to 
the crack growth resistance of a developing fracture 
process zone. Also the curves show that though K~ is 
relatively constant for a given size of specimen for a/d 
ratios (where d = specimen depth) of 0.1 to 0.5, there 
is a marked drop in K~ for aid ratios of less than 0.1 
as is indicated by the experimental data. 

In Fig. 3, we show the KR curves appropriate to the 
specimen size for an aid ratio of 0.25. Only the two 
largest specimens have KR curves that tend to a 
plateau value close to the theoretical value for an 
infinitely large specimen of 0.72 M P a m  1/2. Fig. 3 also 
shows that the size of the fully developed fracture 
process zone is dependent on the specimen size. 

We have superimposed the locus of the instability 
criteria Equations 6 and 7 on the KR curves presented 
in Fig. 3. Here the critical values of the stress intensity 
factor are those calculated at the tip of the fictitious 
crack and hence are larger than those given in Fig. 2. 
It is interesting to note that there is little variation 
in K¢ calculated at the tip of the fictitious crack 
whereas K~ obtained at the tip of the initial notch is 

1.8 

1.6 
IE  

1.4 

% 
t ~  

1.0 

m 
t/1 
ta~ 
a: 0.8 

o.6 
t D  

o.4 

0.2 

d=5mm 

d=8mm 

// d=1~mrn 

/ / / ~ d = z _ . ~ _  ~ d S = ~ m  m ~ ~ d =  110 m m 

i I i I i i 

I 2 3 4 5 6 7 

CRACK GROWTH Aa (ram) 

Figure 3 Crack growth resistance curves for various specimen sizes 
for aid = 0.25. ( ) Instability locus. 



significantly dependent on the specimen size. Thus the 
assumption by Jenq and Shah [20] that K~c is a 
material constant is reasonably accurate for the notch 
bend geometry. However, since KR curves for other 
geometries are significantly different [24] this assump- 
tion may not hold for all geometries. 

Also at fracture instability, as Fig. 3 shows, the 
fracture process zone is not fully developed so that the 
CTOD at the true crack tip is less than 5~. This result 
is in direct contrast to the Jenq and Shah assumption 
of a critical CTOD being satisfied at instability for the 
notch bend geometry. 

It is interesting to compare the values of o- m and ESc 
found empirically from our analysis (8 MPa and 
0 .13MNm -1, respectively) with the estimates of 
12 MPa and 0.03 MN m ~ given by Higgins and Bailey 
[1]. Although the agreement is not close they are of the 
same order, and since Higgins and Bailey used the 
Dugdale model for the process zone (i.e. constant 
stress, which is inappropriate for cementitious 
materials) their value of Eft should strictly be com- 
pared with half of our estimate because we believe that 
K~ is the more fundamental parameter. 

4. Discussion 
For a given specimen depth d, Kc is reasonably 
independent of crack length a provided that the ratio 
aid is greater than about 0.1. Thus by plotting the 
fracture stress against the square root of the crack 
length, we can fit the data reasonably well with a 
constant Kc locus. Therefore many investigators 
working on single-size specimens have concluded that 
Griffith's equation is suitable for fracture analysis. 
Unfortunately Kc increases with specimen size as the 
data of Higgins and Bailey [1] and also Strange and 
Bryant [10] show. Thus we consider that there is suf- 
ficient evidence for a size effect on the fracture tough- 
ness of cement pastes. Although crack speeds can 
affect Kc in many materials [27, 28], judging from the 
slow crack growth data [15] it is doubtful whether this 
can be a significant factor in affecting Kc values of 
different specimen sizes. The crack growth resistance 
curve concept explains the size effects. Apart from the 
support given to this concept from the data of Higgins 
and Bailey [1] plotted in Fig. 2, the results from Brown 
and Pomeroy [6] for double-cantilever-beam specimens 
with a water/cement (w/c) ratio of 0.47 also point to 
the existence of a KR curve. In these experiments Kc 
rises from about 0.25 M P a m  1/2 to a plateau value of  
0.40 MPa m 1/2 as the crack grows by about 30 ram. A 
crack growth resistance can only occur if there is a 
significant fracture process zone where CSH fibrils and 
bridging segments carry some load. Measurements of 
the fracture process zone is difficult. Higgins and Bailey 
[14] have shown the existence of a fracture process zone 
of the order of a millimetre in extent, but there are no 
detailed measurements as a function of specimen size 
d that enable a comparison with our predictions of the 
exact size shown in Fig. 3. 

5. Conclusion 
A general theory has been presented for the fracture 
mechanics of cementitious materials. Using the frac- 

ture data of Higgins and Bailey it is possible to obtain 
crack growth resistance curves for cement pastes that 
can be used to explain size and crack length effects on 
fracture toughness. The crack growth resistance curve 
is only unique for very large size specimens. For smaller 
specimens the curves deviate as the fracture process 
zone develops, because this development significantly 
affects the compliance of the specimen. 
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